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1.0 INTRODUCTION 

This  document provides t h e  level B/C mathematical s p e c i f i c a t i o n s  
for t h e  Area Targe ts  and Space Volumes Psocessor (ATSVP). Pur- 
suant  t o  the requirements of re ference  l, t h i s  processor  is de- 
s igned t o  compute t h e  acquis i t ion-of -s igna l  (AOS) and loss-of- 
s i g n a l  (LOS) t i m e s  f o r  t h e  following: 

a. A r e a  targets 
(1) Earth-referenced circles which are s p e c i f i e d  by a 

l a t i t u d e ,  longi tude,  a l t i t u d e ,  and rad ius .  
(2 )  Celest ia l  circles which are s p e c i f i e d  by a r i g h t  

ascension,  dec l ina t ion ,  and angular  rad ius .  
(3)  Earth-referenced polygons which are a r b i t r a r y  Earth- 

f i x e d  f i g u r e s  having up t o  f i v e  s i d e s  wi th  t h e  
"corner  po in ts"  def ined by l a t i t u d e ,  longi tude ,  and 
a l t i t u l e .  

( 4 )  Celestial polygons which are a r b i t r a r y ,  i n e r t i a l l y  
f ixed  f i g u r e s  having up to  f i v e  s i d e s  wi th  t h e  corner  
po in t s  def ined by r i g h t  ascension and d e c l i n a t i o n  on 
t h e  celestial  sphere. 

b. Space volumes 
(1) Earth-referenced space volumes which are a r b i t r a r y ,  Earth- 

f ixed  polyhedrons havinq up to  f ive  s ides .  These volumes 
are def ined  by a l o w e r - l i m i t  polygon a t  an a l t i t u d e ,  hl, 
and t h e  p ro jec t ion  of t h i s  polygon t o  an a l t i t u d e ,  h2. 
The corner  po in t s  of t h e  polygon are def ined by 
l a t i t u d e s  and longi tudes and r o t a t e  w i t h  t h e  Earth. 

( 2 )  Celes t i a l - f ixed  space volumes which ars  a r b i t r a r y ,  i n e r t i a l -  
l y  f ixed  polyhedrons having up t o  f i v e  s ides .  These volumes 
are def ined  by a lower-limit polygon a t  an a l t i t u d e ,  hl, 
and t h e  pro jec t ion  of t h i s  polygon t o  an a l t i t u d e ,  h2. 
The corner  po in t s  of t h e  polyc,on are ds f ined  by r i g h t  
ascension and dec l ina t ion  on t h e  celest ia l  sphere.  
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T h e  AOS and LOS times f o r  t h e s e  t a r g e t s  a re  d e f i n e d  (ref. 1) as 
follows: 

a. Ground circles and polygons 
AOS - t h e  t i m e  cor responding  t o  t h e  first s u b s a t e l l i t e  p o i n t  

LOS - t h e  t i m e  corresponding t o  t h e  l a s t  s u b s a t e l l i t e  p o i n t  
to  l i e  j u s t  i n s i d e  the  area. 

j u s t  p r i o r  to  e x i t i n g  t h e  area. 
b. Celest ia l  circles and polygons 

AOS - t h e  t i m e  cor responding  t o  t h e  f i r s t  z e n i t h  p o i n t  t o  l i e  

LOS - t h e  t i m e  corresponding tc t h e  las t  z e n i t h  p o i n t  j u s t  
j u s t  i n s i d e  t h e  area. 

p r i o r  t o  e x i t i n g  t h e  area. 
c. Earth-referenced and c e l e s t i a l - f i x e d  space  volumes 

AOS - t h e  t i m e  a t  which t h e  spacecraft (S /C)  i s  j u s t  e n t e r i n g  
t h e  volume. 

LOS - t h e  t i m e  j u s t  pr ior  t o  t h e  S/C e x i t i n g  t h e  volume. 

S i x  d a t a  t ab les  w i l l  c o n t a i n  t h e  infoymat ion  necessa ry  t o  complctsly 
describe t h e  are1 target: ;  and space  volumes. These tables  ( re f .  l j  

are as follows: 

a. Ground t a r g e t s  t ab le  c o n t a i n i n g  1 0  t a r g e t s  i n  i block of d a t a .  

b. Celest ia l  circles t a b l e  -0n ta in ing  1 0  t a r g e t s  i n  1 block of dcita. 

c. Ground polygons table cc,nt; , ining 20  targets i n  2 b locks  of d a t a .  
d. Celestial I J lygons  table c o n t a i n i n g  10 t a r g e t s  i n  1 block of ( i t d .  

e. Ea r th - r e fe renced  space  volumes table  c o n t a i n i n g  1 0  t a r g e t s  i n  
1 block of data .  

f .  C e l e s t i a l - f i x e d  volumes t a b l e  c o n t a i n i n g  1 0  t a rge t s  i n  1 block 
of data.  

S e c t i o n  2 of t h i s  document d e s c r i b e s  t h e  c h a r a c t e r i s t i c s  of the 
area t a r g e t s  and space  volumes and p rov ides  t h e  mathematical 
e q u a t i o n s  necessa ry  t o  de te rmine  whether t h e  S/C l i e s  w i t h i n  

t h e  area t a rge t  o r  space  volume. These e q u a t i o n s  p rov ide  a 
d e t a i l e d  model of t h e  t a r g e t  geometry and w i l l  be used du r ing  
t h e  p r e c i s e  numer ica l  search. 
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Section 3 discusses a semfanalytical technique for predicting 
the AOS and LOS time periods. This technique is designed to 
boruzd the actual visibility period using a simplified target 
geometry model and unperturbed orbital motion. I ts  principal 
purpose is to reduce the burden on the precise numerical search 
by eliminating regions of the S/C orbit where AOS and LOS times 
are physically impossible. Section 4 provides a functional over- 
view of the ATSVP. This section outlines the overall process 
required to determine precise AOS and LOS times. 

Section 5 presents the detailed logic flow for the ATSVP. This 
section integrates the functional overview presented in section 
4 with the equations and approach presented in sections 2 and 3 
and the appendixes. Appendix A discusses the procedure for sub- 

dividing complex concave polygons into two or more simpler convex 
segments. The purpose of this subdivision process is to Fernit 
the equations in section 2 to be used on a segment-by-segment 
basis to ttst for containment. Appendix B provides a solution 
to the conic intersection equations used in section 3 for 
Celestial-fixed targe+s. 
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2.0 AREA TARGETS AND SPACE VOLUMES CHARACTERISTICS AND CONTAINEaENT 
CRITERIA 

The following subsect ions d i scuss  t h e  c h a r a c t e r i s t i c s  of each of 
t h e  area t a r g e t s  and space volumes presented i n  s e c t i o n  1. 
mathematical equat ions necessary to determine whether t h e  S/C lies 
wi th in  t h e  area target o r  space volume are also developed and dis- 
cus sed , 

The 

Two re ference  coordinate systems w i l l  be used. 
Aries mean-of-1950 (M50) coordinate  system (fig. 2-1) w i l l  be t h e  
re ference  system when dea l ing  with area targets and space volumes 
w h i c h  remain i n e r t i a l l y  fixed. 
system (fig. 2-2) w i l l  be used when dea l ing  with area targets and 
space volumes which rotate w i t h  the  Earth. 

The i n e r t i a l  

The r o t a t i n g  geocent r ic  coord ina te  

Each of the following s i x  subsect ions is  f u r t h e r  subdivided i n t o  
three topics: 

a. Procedure - a brief d e s c r i p t i o n  of t h e  s t e p s  t o  be performed. 
b. Equations - a statement  of t h e  inpu t  parameter requirements 

c. Assumptions and l i m i t a t i o n s  - a desc r ip t ion  of any s impl i fy ing  
and development of t he  mathematical equations.  

assumptions and/or mathematical r e s t r i c t i o n s ,  

For convenience, s ec t ion  2.7 summarizes the equat ions for a l l  of 
the  area t a r g e t s  and space volumes. 
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'Earth's mean rotational t axis of epoch 

NAME: Aries mean-of-1950, Cartesian, coordinate systm. 

ORIGIN : The center of the Earth. 

ORIENTATION: The epoch is the beginning of Besselian year 1950 or Julian 
ephemeris date 2433282.423357. 

The %-YM plane is the m e a n  Earth's equator of epoch. 

The % 

:re&& and is positive north. 

axis is directed towards the mean v@mal equinox of epoch. 

axis is directed along the Earth's mean rotational axis 
. 

The YI axis completes a right-handed system. 

CHARACTERISTICS: Inertial, right-handed, Cartesian system. 

Figure 2-1.-  A r i e s  mean-of-1950 coordinate system. 
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NAME: 

ORIGIN : 

ORIENTATION : 

Geocentric wordinate system 

Center of the Earth 

XG - YG 

XG 

ZG 
YG completes the right-handed system 

plane is the  Earth's true-of-date equator 

passes through the  Greenwich meridian 

is  along the Earth's rotat ional  a x i s  

CHARACTERISTICS: Rotating, right-handed, Earth-fixed 

Figure 2-2.- Rotatinq qeocentric coordinate system- 
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2.1 EARTH-REFERENCED CIRCLES 

Earth-referenced circles are def ined to be c i r c u l a r  ground target 
areas whose c e n t e r s  are defined by geodetic l a t i t u d e ,  longi tude,  
an4 J t i t u d e  ( f i g .  2-3). The S/C lies wi th in  t h i s  ground t a r g e t  
arc -. i f  its subsatellite po in t  lies wi th in  t h e  perimeter of t h e  
ci rcular area. 

2.1.1 Procedure 

The following procedure w i l l  be used to determine whether t h e  S / C  

lis: within t h e  ground target area: 

a- The geodet ic  coordinates  of  t h e  ground t a r g e t  area w i l l  be 

b. 
transformed to  the geocent r ic  system. 
The S/C pos i t i on  vector w i l l  be transformed f r o m  t h e  M50 
system to t h e  geocent r ic  system. 

el l i te po in t  lies within t h e  perimeter of t h e  ground target 
area. 

c .  A test w i l l  be performed to determine whether t h e  SIC subsat- 

2,1.2 Equations - 
The €allowing parameters are required: 

0 and X - geodet ic  l a t i t u d e  and longi tude,  r e spec t ive ly ,  of the 
cen te r  of the  Earth-referenced circle (fig. 2-41 

resnee t  to t h e  Fischer  e l l i p s o i d  of 1960 ( f i g .  2-41 

h - a l t i t u d e  of t h e  Earth-referenced circle, measured w i t h  

r - arc ::adius of t h e  Earth-referenced circle ( f i g .  2-3) 
C 

-+ - S/C pos i t i on  vec to r  i n  t h e  M50 system (fig. 2-3) 
RSC 

-t 
t - t i m e  corresponding t o  Rsc 

r-vP]EEi -Rotat ion,  nu ta t ion ,  and precession (RNP) matrix which 
is usad t o  transform vec tors  from t h e  M50 system t o  the 
true-of-epoch i n e r t i a l  ( T E I )  coordinate  system 

- epoch t i m e  corresponding to t h e  RNP m a t r i x  

- mean equa to r i a l  rad ius  for  the  Fischer ellipsoid of 1 9 6 0  

te 

RE .* 
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S,’C 

ellipsoid 

Figure 2-3.-  Earth-referenced circle. 
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Prime (Gree 
'meridian 

NAME: Geodetic coordinate system. 

ORIGIN : This system consists of a set of parameters rather than 
a coordinate system; therefore, no origin is specified. 

ORIENTATION : This system of parameters is based on an ellipsoidal model 
of the Earth (e.9.. the Fischer ellipse of 1960). For 
any point of interest we define a line, known as the geodetic 
local vertical, which is perpendicular to the eLlipsoid 
and which contains the point of interest. 

h, geodetic altitude, is the distance from the point of 
interest to the reference ellipsoid, measu-ed alona the 
geodetic local vertical, and is pcsitive for points out- 
side the ellipsoid. 

A is the lonqitude measured in the plane of the Earth's 
true equator from the prime (Greenwich) meridian to the 
local meridian, measured positive eastward. 

0 is the geodetic latitude, measured in the plane of the 
local meridian from the Earth's true equator to the geodetic 
local vertical, measured positive north from the equator. 

NOTE: A detailed explanation of declination, geodetic 
latitude, and geocentric latitude is provided 
on figure 2-4(b). 

CHARACTERISTICS: Rotating polar coordinate parameters. Only position vectors 
are expressed in this coordinate system. Velocity vectors 
should be expressed in the Aries mean-of-1950, or the Aries 
true-of-date, polar for inertial or quasi-inertial repre- 
sentations, respectively. The Fischer ellipsoid nlodel 
should be used with this system. 

(a) Basic definitions. 

Figure 2-4.- Geodetic coordinate system. 
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Plane 

NAME: Geodetic coord ina te  system of p o i n t  P. 

DEFINITIONS: h is the  a l t i t u d e  of p o i n t  P measured perpendicular  
from t h e  surface of the re ferenced  e l l i p s o i d .  

4 is  the  geodet ic  l a t i t u d e  of p o i n t  P. 

+c is t h e  geocen t r i c  l a t i t u d e  of p o i n t  P. 

6 
(dec l ina t ion ) .  

is t h e  ang le  between r a d i u s  vec to r  and e q u a t o r i a l  p lane  

X is t h e  longi tude  of p o i n t  P. Angle (+ east) between 
plane of  t h e  f i g u r e  and the  p lane  formed by t h e  Greenwich 
meridian. 

(b) Detailed explanat ion.  

Figure 2-4.- Concluded. 
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F - f l a t t e n i n g  c o e f f i c i e n t  for t h e  F ischer  e l l i p s o i d  of 1960 
w - Earth r o t a t i o n  ra te  e 

The f i r s t  s t e p  i s  to  transform t h e  ground t a r g e t  area from t h e  geo- 
detic system t o  t h e  geocentr ic  system. 
c e n t e r  of  t h e  Earth t o  t h e  center  of  t h e  ground target area can 
be expressed i n  t h e  r o t a t i n g  geocent r ic  system by 

The vector from t h e  

I (h  + aF) cos X cos Q 

(h  + a,) s i n  A cos Q ’‘ =: 
B I [h + (1 - F12 %] s i n  Q 

where 

(2-2)  

The second s t e p  is t o  transform t h e  S/C p o s i t i o n  vec tor  from the 
M50 system t o  t h e  geocent r ic  system. This  is  accomplished by 

a. Transforming t h e  vec tor  from the  M50 system t o  t h e  TEI  system 
using t h e  RNP matrix. 

geocentr ic  system. 
b. Transforming t h e  r e s u l t a n t  vec tor  from t h e  TEI system t o  t h e  

The S/C pos i t i on  vec to r  i n  t h e  T E I  system is  given by 

2- 8 



The S/C poet t ion  vector i n  t h e  geocent r ic  system ( f ig .  2-5) is 
given by 

where 

The f i n a l  s t e p  is t o  determine whether t h e  S/C s u b s a t e l l i t e  po in t  
lies with in  t h e  ground t a r g e t  area ( f i g .  2-3). The angle  from 

i s  given ( i n  degrees) by 
to t h e  perimeter of t h e  circular ground t a r g e t  area, yA, 

The angle  from t o  t h e  S/C, ys, i s  given by 

SG ZG -1 * B  ys = cos 

The S/C l ies w i t h i n  t h e  ground t a r g e t  a r e a  i f  
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Greenwich meridian 'TEI' ZG 
Greenwich meridian 
a t  epoch tfm 

e-- 

%) we (.t - 

Figure 2-5.- Relationship between TEI and 
rotating geocentric systems. 
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2.1.3 Assumptiors and L i m i t a t i o n s  

The following assumptions are i m p l i c i t  i n  the  equat ions presented 
i n  s ec t ion  2.1.2: 

a. The S/C geocent r ic  subsatellite po in t  is used t o  compute e n t r y  
i n t o  t h e  ground t a r g e t  area.  

t i m e  t can be neglected.  
b. The effects of polar nu ta t ion  and precession from time te t o  

c. The r ad ius  of t h e  Earth-referenced circle, rCp is a 
segment of arc. 
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2.2 CELESTIAL CIRCLES 

Celestial c.'rcles are de f ined  t o  be c i r c u l a r  areas on t h e  celestial 
sphe re  ( f i g .  2-6). The c e n t e r  of t h i s  area target i s  d e f i n e d  by 
r i g h t  ascens ion  and d e c l i n a t i o n .  The c r i t e r i o n  for a S/C t o  l i e  
w i t h i n  t h i s  area is f o r  t h e  S/C z e n i t h  p o i n t  t o  l i e  w i t h i n  t h e  
perimetizr of t h e  celestial circle. 

2.2.1 Procedure 

The fo l lowing  procedure w i l l  be used t o  determine whethe- 
l ies w i t h i n  t h e  celestial circle: 

.--' S/C 

a. The u n i t  vector a long  t h e  c e n t e r l i n e  of t h e  celestial  c i rc le  

b. The dot product  between t h i s  v e c t o r  and t h e  S/C p o s i t i o n  
w i l l  be computed i n  t h e  M50 system. 

vector w i l l  be formed to determine whether t h e  S/C lies 
w i t h i n  t h e  celert ial  circle. 

2.2.2 Equat ions 

The fo l lowing  parameters  are requ i r ed :  

uA and 6, - t h e  r i g h t  ascens ion  and d e c l i n a t i o n ,  r e s p e c t i v e l y ,  of 
t h e  c e n t e r l i n e  of  t h e  celestial circle expressed  i n  
t h e  M50 system ( f i g .  2-6). 

- t he  celestial circle a n g u l a r  r a d i u s  ( f i g .  2-6). 
- S/C p o s i t i o n  vector i n  t h e  yI50 system. i;" 

SC 

The u n i t  v e c t o r  from t h e  c e n t e r  of t h e  Ea r th  t o  t h e  c e n t e r  of the 
celestial circle, 

A eB, is g iven  by 

COS a, COS 

A 

' B = I  s i n  a, cos 6, I 
s i n  6, 

(2-9) 
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Earth 

Y 

Center l i n e  of 
celestial circle 

r 

Figure 2-6.-  Containment test for ce l e s t ia l  circles. 
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The angle between t h i s  vector and the  S/C, yS, is 

The S/C lies within the celestial circle if 

2.2.3 Assumptions and Limitations 

None. 

(2-10) 
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2.3 EARTH-REFERENCED POLYGONS 

The Earth-referenced polygon is defined to  be an a r b i t r a r y  planar 
figure having up to  f i v e  sides ( f ig .  2-7). This figure is f i x e d  
w i t h  respect t o  t h e  ro t a t ing  E a r t h .  The corner p o i n t s  (i.e., 
vertices) of  this polygon are def ined  by geodetic l a t i t u d e ,  longi- 
tude, and a l t i t u d e .  The basic criterion for pene t r a t ion  is to 
ensure that t h e  S/C subsatellite point lies wi th in  t h e  per imeter  
of t h e  ground target area. 

2.3. 1 Procedure 

The basic procedure f o r  t h i s  ground t a r g e t  area is sMlar to t h e  
procedure presented i n  s e c t i o n  2.1.1. 

a. 

It  c o n s i s t s  of 

Transforming t h e  geodetic coord ina tes  o f  each polygon vertex 
to  the geocent r ic  system. 

Transforming the S/C p o s i t i o n  vec to r  from t h e  M50 system to  
the  geocent r ic  system. 

planes def ined by t h e  s i d e s  of t h e  polygon. 

b. 

c. Test ing to  determine whether t h e  S/C is i n t e r i o r  to a l l  

2.3.2 ua t ions  

The following parameters are required: 

- n 
ei and Xi - 

- 
$i - 
sc - t 

TEI  - 
cRNp'M50 

- 
"'e 

number of s i d e s  
geodet ic  l a t i t u d e  and longi tude,  r e spec t ive ly ,  of 
each ver tex  ( f ig .  2-7) 

geodet ic  a l t i t u d e  of each vertex ( f ig .  2-7) 

S/C pos i t i on  vector i n  t h e  M50 system 
t i m e  corresponding to  RBc 
RhP matrix t o  transform from t h e  M50 system t o  t h e  
TEI system 
epoch t i m e  corresponding t o  t h e  RNP matrix 
mean e q u a t o r i a l  rad ius  f o r  t he  F ischer  e l l i p s o i d  of 1960 
f l a t t e n i n g  c o e f f i c i e n t  for t h e  Fischer  e l l i p s o i d  of 1960 
E a r t h  r o t a t i o n  r a t e  
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F ischer ( 196 0 1 
ellipsoid 

I 
True-o f -date 
equator 

A 
1 

I 
Greenwich 
meridian 

Figure 2-7.- Earth-referenced polygon. 
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The f i r s t  s t e p  is to transform t h e  parameters de f in ing  each 
ve r t ex  of t h e  polygon from t h e  geodet ic  system t G  t h e  rc \ ta t ing  
geocent r ic  system. These vec tors  are given by 

I (2-12) 

(hi + ap) cos Xi cos bi 

(hi + aF) s i n  X i  cos Oi i = 1,2,3,...n 

ki + (1 - F12 ap]sin 4i 

w h e r e  

is defined by equation 2-2 with  Oi r ep lac ing  4. =F 
The S/C p o s i t i o n  vector in t h e  geocent r ic  system, 
obtained by using equat ions 2-3 through 2-5. 

qc, is  then 

The next  s t e p  i n  t h e  procedure is to determine whether t h e  S/C 
lies i n t e r i o r  to a l l  planes def ined by t h e  s i d e s  of t h e  polygon. 
Figures 2-8 and 2-9 i l l u s t r a t e  the geometry. A l l  vec to r s  i n  these  
f igu res  are w i t h  respect t o  t h e  geocent r ic  system. The cen t ro id  
of the ground target area, E:, ( f ig .  2-8) is defined as 

(2-13) 

The u n i t  normal vectors  to each side of t h e  polygon ( f ig .  2-9) are 
given by 

(2-14b) 
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./ / 
LoCill 
horizon 

F i s c  her 
e l l ipso iG 

Figure 2-8.- Centroid of Earth-referenced polygons. 
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P l a n e  2 

Plane  

Figure 2-9.- Containment t e s t  for Earth-referenced polygons. 
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The 

The 

G perpendicular d i s t ance  from E ,  to each polygon s i d e  is 

di = Ni n~ . (sG 1 - 6:) i = 1,2,3,  ... n (2-15) 

S/C must lie i n t e r i o r  t o  t h e  i th plane i f  

where 

(2-161 

If equation 2-16 is  s a t i s f i e d  f o r  a l l  sides, then t h e  S/C sim- 
satellite po in t  lies within t h e  per imeter  of t h e  polygon. 

2.3.3 Assumptions and Limitat ions 

The following assumptions and l i m i t a t i o n s  are i m p l i c i t  i n  t h e  

equat ions presented i n  s e c t i o n  2.3.2 : 

a. 

b. 

C .  

d. 

e. 

f .  

The S/C geocent r ic  subsatellite po in t  is  used t o  determine 
e n t r y  i n t o  t h e  ground t a r g e t  area. 
The e f f e c t s  of polar nuta t ion  and precession from tirile 

t o  t can be neglected.  
The v e r t i c e s  of t he  polygon a r e  s p e c i f i e d  i n  a counterclackhiss  
o rde r  as viewed from the  top. 
The polygon is  convex; i .e. ,  t h e  i n t e r i o r  angles between t.he 

s i d e s  def in ing  t h e  v e r t i c e s  are less t h m  l r ? O  degrees.  
The angular separa t ion  betwaen t w o  consecutive v e r t i c e s  is 
s u f f i c i e n t  t o  permit a nonzero cross product (eq. 2-14). 
The S/C and t h e  ground t a r g e t  a rea  l i e  i n  t h e  same hemispheye. 
The procedure discussod i n  sect ion 3 will assure t:iis 

condition. 

L~ ,- 

1 

'Concave polygons can be accommodated by subdividing them i n t c j  
t w o  or more convex polygons. Appendix A d i scusses  t h i s  procedure. 
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2.4 CELFSTIAL POLYGONS 

Celestial polygons are defined t o  be arbitrary f i g u r e s  having up 
t o  f i v e  sides with t h e  corner  p o i n t s  ( i .eO8 vertices) def ined by 
r i g h t  ascension and d e c l i n a t i o n  on t h e  celestial sphere. 
criterion for penet ra t ion  i n t o  t h i s  area is  t o  ensure t h a t  t h e  
S/C zeni th  p o i n t  lies wi th in  t h e  confines  of t h e  polygon. 
2-10 i l lustrates t h e  celestial polygon. I t  i s  noted t h a t  t h i s  
polygon also rep resen t s  a v a r i a b l e  area polyhedron which remains 
i n e r t i a l l y  f ixed.  

The 

Figure 

2.4.1 Procedure 

The bas i c  procedure f o r  t h i s  area target is similar to  t h e  proce- 
dure presented i n  sec t ion  2.3.1, i.e.8: 

a. The u n i t  vector along t h e  "centroid" of t h e  polyhedron w i l l  

b. Tests w i l l  be made t o  determine whether t h e  S/C is  i n t e r i o r  
be computed i n  t h e  M50 system. 

to  a l l  planes def ineu by t h e  s i d e s  of  t h e  polyhedron. 

2.4.2. Eq uat ions  

The following parameters a r e  required: 

n - number of s i d e s  
ai and 6i - r i g h t  ascension and d e c l i n a t i o n ,  r e spec t ive ly ,  of each 

ve r t ex  i n  t h e  M50 system (i = 1,2,3, . . .n) 
- S/C pos i t i on  vec tor  i n  t h e  M50 system sc 3 

The f i r s t  s t e p  i s  t o  determine the u n i t  vec tor  along t h e  cen t ro id  
of t h e  polyhedron. The u n i t  vectors from t h e  center of t h e  Earth 
to each ve r t ex  i n  t h e  M50 system a r e  given by 

cos ai cos 6i 
A 

(2-18) Ri 
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2 

Figure 2-10.- Celestial polygon. 
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The u n i t  vector along t h e  cen t ro id  of t h e  polyhedron is 

where 

8 - i=l - 
n 

(2-19) 

(2-20) 

The f i n a l  s t e p  is  t o  determine whether t h e  S/C lies i n t e r i o r  t o  a l l  
planes defined by t h e  s i d e s  of t h e  polyhedron. Figure 2-11 i l l u -  
strates t h e  geometry. The s l a n t  range f r o m  C to t h e  S/C is  

A 

(2-21) 

+G +G 

pB, r eLpec t ive ly )  are then used t o  determine whether 

Equations 2-14 through 2-16 (with Ri, CB, and replaced by 

Ri, 

t h e  S/C is i n t e r i o r  t o  a l l  polyhedron planes. 

3 
A A 

C ,  and 

2 . 4.3  Assumptions and Limitat ions 

The following assumptions and l i m i t a t i o n s  are i m p l i c i t  i n  t h e  
equat ions presented i n  sec t ion  2.4.2: 

a. The v e r t i c e s  of t h e  polygon are spec i f i ed  i n  a counterclockwise 
order  as viewed from t h e  top. 

b. The polygon is convex: i .e.,  t h e  i n t e r io r  angles  between t h e  
&-des def in ing  the  v e r t i c e s  are less than 180 degrees. 

c. The angular separa t ion  between t w o  consecutive v e r t i c e s  is 
s u f f i c i e n t  t o  permit a nonzero cross product (eq. 2 - 1 4 ) .  

d. Tl-;e S/C and t h e  area t a r g e t  l i e  within the  same hemisphere. 
The procedure ou t l ined  i n  section 3 w i l l  assure t h i s  condi t ion.  

1 

Concave polygons can be accommodated by subdividing them I 

i n t o  two o r  more convex polygons as d i scmaed  i n  appendix A.  
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Earth 

Figure 2-11.- Containment test for celestial polygons. 
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2.5 EARTH-REFERENCED SPACE VOLUMES 

The Earth-referenced space volumes are a r b i t r a r y  polyhedrons 
which are def ined  by a l o w e r - l i m i t  polygon a t  an a l t i t u d e ,  
hl, and t h e  p ro jec t ion  of t h i s  polygon t o  an a l t i t u d e ,  
vertices of t h i s  polygon are def ined  by geodet ic  l a t i t u d e  and 
longi tude and rotate wi th  t h e  Earth. Figure 2-12 i l l u s t r a t e s  
t h i s  type of  space volume. As shown, t h e  p l ana r  cross s e c t i o n a l  
area of t h i s  polyhedron remains cons tan t  with r e s p e c t  t o  a l t i t u d e .  

h2. The 

2.5.1 Procedr .e 

The following procedure w i l l  be used t o  determine whether t h ?  S/C 
lies wi th in  t h e  space volume: 

a. The  geodet ic  parameters de f in ing  each ve r t ex  of t h e  lower 

b. The cent ro id  vec to r  t o  t h e  lower boundary w i l l  be computed 

c. The S/C pos i t i on  v e c t x  w i l l  be transformed from t h e  M50 

d. T e s t s  w i l l  be performed t o  ensure t h a t  t h e  S/C l ies  above t h e  

boundary w i l l  be transformed t o  geocsn t r i c  pos i t i on  vec tors .  

i n  t h e  geocent r ic  system. 

system t o  t h e  geocen t r i c  system. 

lower boundary and belc-?  t h e  upper boundary. 
t hese  tests f a i l s ,  then no f u r t h e r  computations are re- 
quired.  

t o  determine whether t h e  S/C i s  i n t e r i o r  t o  a l l  planes 
def ined  by t h e  s i d e s  of t h e  polyhedron. 

I f  e i t h e r  of 

e.  Assuming t h e  previous s t e p  i s  passed, tests w i l l  be performed 

2 .5 .2  Eauations 

The following parameters are required:  

n - number of  s i d e s  
9i and X i  - geodet ic  l a t i t u d e  and longi tude,  r e spec t ive ly ,  o f  

each ve r t ex  of t h e  lower boundary 
- geodet ic  a l t i t u d e  of t h e  lower boundary 
- geodet ic  a l t i t u d e  of t h e  upper boundary 

hl 
h2 
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Figure 2-12.-  Constant area polyhedron. 
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- 
sc 6 
t - 

TEI - 
LRNP JW50 

- 
Rem 

- F 

S/C position vector in the M50 system 
time Corresponding to itsc 
RNP matrix to transform from the M50 to TEI system 
epoch time corresponding to the RNP matrix 
mean equatorial radius for the Fischer ellipsoid 
of 1960 
flattening coefficient for the Fischer ellipsoid 
of 1960 
Earth rotation rate 

The first step is to transform the parameters defining each 
vertex of the lower boundary to geocentric position vectors. 
Equation 2-12 (with hi = 0) provides the necessary transformation. 

The centroid of these vectors is given by 

n 

The geocentric vector to the centroid of the lower boundary 
(fig. 2-13) is given by 

(2-22) 

(2-23) 

Next, the S/C position vector in the geocen-ric system, 
computed using equations 2-3 through 2-5. 

itG is sc 

The fourth step in the procedure is to ensure that the S/C lies 
between the upper and lowar boundaries. Figure 2-13 illustrates 
the geometry. A l l  vectors in this figure are with respect to 
the geocentric s y s t e m .  Thz slant range from ?: to the S/C, pB, -+G 

2-27 



Centerline 

+G 
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w c  

Center of Earth 

Figure 2-13.- Boundary t e s t s  for constant area polyhedrons. 
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is given by 

(2-24) 

The S/C lies above t h e  lower boundary and below t h e  upper boundary 
i f  

(2-25) 

Assuming tha t  equation 2-25 is s a t i s f i e d ,  t h e  f i n a l  s t e p  is t o  
determine whether t h e  S/C lies i n t e r i o r  t o  the  side planes of 
t h e  polyhedron. Figure 2-14 i l l u s t r a t e s  t h e  geometry. The u n i t  

4 normal vectors from CB t o  each side of t h e  polygon are given by 

i = 1,2,3 ... n-1 
(2-26a) 

(2-26b) 

Equations 2-15 through 2-17 are then used to  determine whether t h e  
S/C is contained within t h e  polyhedron. 

When deal ing with concave space volumes, using the  segmentation 
procedure discussed i n  appendix A, t h e  following procedure m u s k  
be follc-csd t o  prevent geometric d i s t o r t i o n  of the segments. 

a. The cen t ro id  of the  e n t i r e  space volume is used f o r  CB i n  +G 

equations 2 24 and 2-25 to  test the  upper and lower boundary 
cons t r a in t s .  
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C e n t e r  line 
Plane 2 I 

Upper boundary 

Center of t h e  Earth 

F i q i x a  2-14.- Containment test for constant area polyhedrons. 
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% 
CB b. The cen t ro id  of t h e  e n t i r e  space volume is also used for 

in equation 2-26 to cons t ruc t  t h e  u n i t  normal vectors on a 
segment-by-segment basis, 
The segment cen t ro id  is used i n  equat ions 2-15 through 2-17 
to test for parameter containment. 

c. 

2.5.3 Assumptions and Limi ta t ions  

The following assumptions and l i m i t a t i o n s  are i m p l i c i t  i n  the 
equat ions presented i n  s e c t i o n  2.5.2: 

a. 

b. 

C. 

d. 

e. 

f .  

The a l t i t u d e  of t h e  l o w e r  boundary, 
respect to  t h e  cen t ro id  of t h e  v e r t i c e s  which l ie  on the 
Fischer e l l i p s o i d .  

The effects of po la r  nu ta t ion  and precession f r o m  t i m e  
t o  t can be neglected.  
The vertices are specified i n  a counterclockwise order as 
viewed from the  top. 
The p lanar  area of the  polyhedron is  convex; i.e., the  i n t e r -  
ior angles  between the  sides de f in ing  the v e r t i c e s  are less 
than 180 degrees. 
The l o c a l  horizon for determining whether t h e  S/C is between 
t h e  upper and l o w e r  boundaries is  perpendicular t o  t h e  centroid 
vec to r  . 
The d i s t ance  between t w o  consecutive v e r t i c e s  is s u f f i c i e n t  
t o  permit a nonzero cross product (eq. 2-26). 

hl, is measured w i t h  

te 

1 

'Concave polyhedrons can be accommodated by subdividing them 
i n t o  two o r  more convex por t ions  a s  discussed i n  appendix A. 
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2 . 6 CELESTIAL-FIXED SPACE VOLUMES 

The ce l e s t i a l - f ixed  space volumes are a r b i t r a r y  polyhedrons 
which are defined by a lower-limit polygon a t  an a l t i t u d e ,  

The 
v e r t i c e s  of t h e  polygon are defined by r i g h t  ascension and de- 
c l i n a t i o n  and are i n e r t i a l l y  fixed. Figure 2-12 can also be 
used t o  i l l u s t r a t e  t h i s  type of space volume. A s  mentioned 
previously,  t h e  p lanar  cross s e c t i o n a l  area of t h i s  polyhedron 
remains constant  wi th  r e spec t  t o  a l t i t u d e .  

and a p ro jec t ion  of t h i s  polygon to an a l t i t u d e ,  h2. hl 

2.6.1 Procedure 

The basic procedure for t h i s  space volume is  very s i m i l a r  to t h e  
procedure presented i n  sec t ion  2.5.1. 

a. 

I t  c o n s i s t s  of: 

Computing t h e  cen t ro id  vec tor  to  t h e  lower boundary i n  t h e  
MSO system. 

and below t h e  upper boundary. 
then no f u r t h e r  computations are required.  

b. Test ing to  ensure t h a t  t h e  S/C lies above t h e  lower boundary 
I f  e i t h e r  of t hese  tests f a i l s ,  

c. Assuming the  previous s t e p  i s  passed, f u r t h e r  tests w i l l  be 
performed t o  determine whether the S/C i s  i n t e r i o r  t o  a l l  
planes def ined by t h e  s i d e s  of t h e  polyhedron. 

2.6.2 Equations 

The following parameters are required: 

n - number of s i d e s  
a and 6i - r i g h t  ascension and dec l ina t ion ,  r e spec t ive ly ,  of i 

each ver tex of t h e  lower boundary i n  t h e  350 system 
- a l t i t u d e  of t h e  lower boundary 
- a l t i t u d e  of t h e  upper boundary 
- mean equa to r i a l  rad ius  

hl 
h2 

Rem 
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A 

The u n i t  vector  t o  t h e  cent ro id  of t h e  polyhedron, 
puted v i a  equations 2-18 through 2-20. 
of t h e  lower boundary is given by 

C, is com- 
%he vec tor  to t h e  cent ro id  

8, = (Rem + hl) (2-27) 

+G Equations 2-24 and 2-25 ( w i t h  va r i ab le s  +G Rsc and CB replaced by 

lies between the  upper and lower boundaries. 

+ -b 
and CB, respect ively)  are then used to ensure t h a t  t h e  S/C Rsc 

+G Assuming equation 2-25 is s a t i s f i e d ,  equation 2-26 (with CB 
and replaced by 8, and Ri8 respec t ive ly)  is used to  
def ine  t h e  u n i t  normal vec tors  t o  each side of t h e  polyhedron. 
F ina l ly ,  equations 2-15 through 2-17 are used t o  determine whether 
t h e  S/C lies within the space volume. 

A 

When deal ing with concave space volumes, using the segmentation 
procedure discussed i n  appendix A, t h e  following procedure must 
be followed to  prevent geometric d i s t o r t i o n s  of the  segments. 

a, The cent ro id  of the  e n t i r e  space volume is used f o r  CB i n  "G 

equations 2-24 and 2-25 to  test the  upper and lower boundary 
cons t r a in t s ,  
The centroid of t h e  e n t i r e  spzce volume is also used for 
equation 2-26 t o  cons t ruc t  t h e  u n i t  normal vec tors  on a 
segment-by-segment basis. 
The segment cent ro id  i s  used i n  equat ions 2-15 through 2-17 
t o  test f o r  perimeter containment. 

i n  cB b. 

c. 

2-33 



2.6.3 Assumptions and Limitations 

The following assumptions and limitations are implicit in the 
equations presented in section 2.6.2: 

a. 

b. 

C. 

d. 

The altitudes of the lower and upper boundaries are measured 
with respect to the mean equatorial radius. 
The vertices are specified in a counterclockwise order as 
viewed from the top. 
The planar area of the polyhedron is convex: i.e., the in- 
terior angles between the sides defining the vertices are 
less than 180 degrees. 
The distance between two consecutive vertices is sufficient 
to permit a nonzero cross product (eq. 2-26). 

1 

“Concave polyhedrons can be accommodated by subdividing 
them into two or more convex Dortions as discussed in appendix A. 
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2.7 SUMMARY OF EQUATIONS 

This section summarizes all of the equations presented in the 
previous sections for the various area targets and space volumes. 
The order of presentation and equation numbers correspond to the 
computation sequence discussed in the text. 

2.7.1 Earth-Referenced Circles 

(h + aF) cos A cos $J 

(h + aF) sin X cos t$ (I. + (1 - F)2aF)sin 1 = 

where 

where 

r cos AA sin A A  0 %  

A X  = w e (t - te) ( 2 - 5 )  
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180 
T 

y s I  cos-l{ ") 
l q c l  1q 

2 . 7 . 2  Celestial Circles 

cos OL cos & A  A 
A 

'B-( s i n  a A cos 6A } 
s i n  

sc 

ys 5 yA 

2.7.3 Earth-Referenced Polyqons 

'(2-6) 

(2-9) 

(2-10) 

(2-11) 

i = 1,2,3, ... n (2-12) I (hi + aF) cos 1. cos ei 
SG = (hi + aF) sin X i  cos Q i  

i 

- F) 2 aF] s i n  @i I [hi, + (1 
i 
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where 

Rem 
2 2 2 ’  

cos $i + (1 - F) sin 4i 
%?= 

+TEI = TEI ;R 
RSC [RNp’M50 sc 

cos A X  sin AX 0 G 
-sin A X  cos A X  0 Rsc (2-4) 

1 1 TEI +TE1 . = [  sc 0 

0 

A X  = w e (t - te) (2-5) 

(2-13) +G I i=1 
‘B - n 

+G 

i = lf2,3,...n-1 (2-14a) ^G Ri+l N. = 
3. *= x 3Gl 1 Ri+l 1 

(2-14b) 

di = Ni ^G (8G - E : )  i = 1,2,3, ... n (2-15) 
1 

i = 1,2,3,...n (2-16) 
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where 

2.7.4 Celestial Polygons 

cos ai cos 6 
A 

Ri = I s i n  ai cos 6: I 
sin 6i 

where 

8 - i=l 
n 

- 

+ - E  sc 

(2-17) 

i = 1,2,3, ... n (2-18) 

(2-19) 

(2-20) 

(2-21) 

A 

x ii 
i = 1,2,3, ... n-1 (2-14a) A - - Ri+l 

Ni I4.+1 x kit 

(2-14b) 

h 

di = Ni (&i - E )  i = 1,2,3,...n (2-15) 

i = 1,2,3,...n (2-16) h -P 

Ni PB 
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2 . 7 . 5  Earth-Referenced Space Volumes 

s i n  Xi cos ai 
s i n  ai 

i = 1,2,3,...n 

aF cos Xi cos t$ 

, aF 
(1 - F) a 2 

F 
(2-12) 

where 

a =  %m 
2 2 2 )  F 

cos ai + (1 - F) sin @i 

where 

EG +G = zG + hl cB 

+TEI - TEI ;R 
RSC - CRNP’M50 sc 

cos A X  sin A X  O[ 
&TEI - s in  A X  cos A X  0 sc 

0 0 1 E1 

A X  = w e (t - te) 

(2-22) 

(2-23) 

(2-3)  

(2-5) 

( 2 - 2 4 )  
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(2-25) 

i = 1,2,3,. ..n-1 

(2-26a) 

di = Ni AG (3: - E ; )  

(2-2633) 

i = l,2,3, ...n(2-15) 

i = 1,2,3, ... n(2-16) di 

2.7.6 Celestial-Fixed Space Volumes 

where 

cos ai cos 6i 
A 

i = 1,2,3, .. .n(2-18) 

(2-19) 

(2-20) 

(2-27) 
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(2-21) 

(2-25) 

i = 1,2,3, ... n-1 1 
IC, x (Ri - Ri+l 

-+ h 

h CB X (ki - Ri+l - - 
) I  (2-26a) 

A h -+ Ni - 

A E, x (inn - iil) 
I E ,  x ( in  - SI) I 

- 
Nn - (2-26h) 

A + 
Ni pB - < di i = 1,2,3, ... n(2-16) 
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. O  SEMIANALYTICAL ALGORITHM TO PREDICT AOS AND LOS TIMES 

This sec t ion  presents  a semianalyt ic  technique for p r e d i c t i n g  AOS 

and LOS times. 
v i s i b Z l i t y  periods and uses a simplified geometry model i n  con- 
junct ion wi th  unperturbed orbital motion. Its p r i n c i p a l  purpose 
is to  reduce the burden on t h e  p r e c i s e  numerical search  by 
e l imina t ing  r-:ons of t h e  S/C orbi t  where AOS and LOS times are 
phys ica l ly  impussible. 

This  technique is designed t o  bound t h e  a c t u a l  

The basic procedure c o n s i s t s  of t h e  following: 

a. Determining t h e  parameters of an o u t e r  boundary cone which 
circumscribes t h e  e n t i r e  area t a r g e t  or space v o l v e .  
Determining whether the o r i e n t a t i o n  of t he  S / C  orbi t  p lane  
w i l l  permit any i n t e r s e c t i o n s  of the  o u t e r  bcundary cone 
with t h e  S/C orbi t  plane. 

b. 

c. Assuming i n t e r s e c t i o n s  are poss ib le  for t h e  following: 

(1) Celestial-fixed targets 
(a) Compute t h e  conic  i n t e r s e c t i o n  p o i n t s  of t h e  o u t e r  

(b) 

boundary cone with t h e  S/C orbit  plane. 
Compute pred ic t ions  of AOS and LOS t i m e s  

r e spec t ive ly )  for each 
( tAOSK and tLOSK' 

revolut ion based upon these  i n t e r s e c t i o n  points .  
( 2 )  Earth-fixed targets 

(a) Compute t h e  t i m e  of  closest approach (TCA) of t h e  

S/C pos i t i on  vec tor  w i t h  t h e  center l i r ie  of t h e  
o u t e r  boundary cone and t h e  corresponding closest 
approach angle (y,). 

performed on a revolution-by-revolutLon Lisis. 
(b) If ycA is less than  or equal t o  t h e  half-cone 

angle  of the  ou te r  boundary cone, then compute 
pred ic t ions  of AOS and LOS times based upon t h e  

times when t h e  S/C l ies on t h e  perimeter of t h e  

These computations a r e  
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o u t e r  boundary cone. These times are denoted by 

LOSK' AOSK and t 

A f t e r  t h e  AOS and LOS t i m e  p red ic t ions  are determined, t h e  p r e c i s e  
numerical search  (using t h e  detailed area target and space 
volume geometry model discvssed i n  sec. 2)  can then be performed 

to tLOSK' over the reduced time regions f r o m  tAos, 

The following parameters are required t o  predict t h e  AOS and LOS times: 

- star t  t i m e  for t h e  search 

- end t i m e  for t h e  search  
tstart  

tend 
A t  - t i m e  increment for  t h e  search. For t h e  purposes of 

this algorithm, A t  w i l l  be used as a t o l e rance  for 
converging upon the AOS and LOS times f o r  Earth- 
referenced targets. 

B 
-+ 

vsco 

s ta r t '  - S/C p o s i t i c n  vec tor  i n  the MSO system a t  t 

- S/C ve loc i ty  vector i n  t h e  X50 system a t  tstart. 

TE* - RIW matrix t o  transform from t h e  M50 t o  t h e  TEI CRNPIM5O 

te 

system. 
- epoch t i m e  corresponding to  t h e  RNP matrix. 

The following subsect ions provide t h e  necessary equations.  
Sect ion 3.1 d iscusses  t h e  computation of t h e  ou te r  boundary cone 
parameters. Sect ion 3.2 discusses  t h e  technique t o  determine 
whether any AOS or LOS t i m e s  are possible .  Sect ion 3.3 p re sen t s  
t h e  equations t o  p r e d i c t  AOS and LOS t i m e s .  Section 3 . 4  discusses  
t h e  assumptions and l i m i t a t i o n s  i m p l i c i t  i n  t h e s e  equations.  

Two reference coordinate  systems a r e  used i n  these computations. 
The M50 coordinate  sys tem is  used when deal ing with c e l e s t i a l -  
f i xed  t a r g e t s  and t h e  T E I  system is  used f o r  Earth-referenced 
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targets. 
i n  order to  model the  effects of polar nuta t ion  and precession 
on the Earth's sp in  axis. 
w i t h  t he  Earth's spin axis a t  the epoch t i m e  of the RNP matrix. 

The TEI system w a s  selected for Earth-referenced targets 

The 2 axis of the TEI system is a l igned  

i'2r ce le s t i a l - f ixed  targets, the  M50 Keplerian elements (a, e, + 
i, Q, w ani? Mo) a t  the  start  t i m e  will be computed from Rsco 
and f . 

scO 

For Earth-referenced targets, the  TEI Keplerian elements a t  the  
start time will be computt;9 from -*RTE1 and Vsc +TEX where 

0 

i;TEI TEI 3 
= cm3V50 sco 

scO 
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3.1 COMPUTING OUTER BOUNDARY CONE PARAMETERS 

The o u t e r  boundary cone i s  def ined  by 

- r i g h t  ascension of t h e  c e n t e r l i n e  

- l a t i t u d e  of t h e  c e n t e r l i n e  

- half-cone angle 

aO 

4 0  

YA 

For Earth-referenced targets these parameters w i l l  be def ined  i n  
the TEI system a t  tstart. For celestial-fixed targets, these 

parameters w i l l  be def ined  i n  t h e  M50 system and remain i n v a r i a n t  
w i t h  respect t o  time. 

3. 1.1 Earth-Referenced Circles 

The u n i t  vec to r  a long t h e  c e n t e r l i n e  of the cone is given i n  t h e  
TEI system by 

cos AA - s i n  AX 0 
s i n  A X  cos A A  o 

TEI  8 G  
F: - 1 0 ' G  

(3-3) 

where 

is given by equat ion 2-1 

A X  is given by equat ion 2-5 wi th  t equal  t o  tstart 

Thus, t h e  r i g h t  ascension and l a t i t u d e  of t h e  c e n t e r l i n e  is given 
i n  t h e  TEI system ( a t  the s t a r t  of t h e  search)  by 

I 

I 
'The TEI system is  s e l e c t e d  for  Earth-referenced targets i n  

o rde r  t o  model t h e  po la r  nu ta t ion  and precess ion  from M50 r e fe rence  
t o  t h e  epoch t i m e  of t h e  RNP mat r ix .  
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$o = sin -l { c y )  

where 

(3-5) 

The half-cone angle ,  yA, is given by equation 2-6. 

3.1.2 celestial C i r c l e s  

The r i y b t  ascension, l a t i t u d e ,  and half-cone angle  i n  the M50 
system arz given via i n p u t  

A a. = a 

$0 = 6*  

3.1.3 Earth-Referenced Polygons 

The u n i t  vec to r  along t h e  c e n t e r l i n e  of t h e  o u t e r  boundary cone is 
given i n  t h e  TEI system by equation 3-3 where equation 2-13 is used 
to  compute CB. Equations 3-4 and 3-5 are then used to  compute 
a and 40, respec t ive ly .  The o u t e r  boundary cone is centered 
along t h e  cen t ro id  vec to r  and has an angular  r ad ius  which conta ins  
t h e  ve r t ex  f u r t h e s t  from t h e  cen t ro id  vec to r  ( f i g .  3-1). Thus, 
t h e  half-cone angle  is given by 

+G 

0 

yA = max 

where 

max implies  

iF 1 is  

t h e  maximum a lgebra i c  value 

given by equation 2-12. 
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Centerline of 
/ outer boundary cone 

Cone 
circumscribing 
Earth-re f erenced 
polygon Earth-re f erenced 

Polygon 

Vertex furthest from 
centroid 

Center of Earth 

Figure 3-1.- Circumscribing polyqons.  
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3.1.4 Celestial Polygons 

The u n i t  vector along the  center l ine  of the celestial polygon is 
given by equation 2-19. 
by C) are then used to  compute a, and 4,,, respectively. The 
half-cone angle which contains the  vertex fu r thes t  from t h e  centroid 
is given by 

Equations 3-4 and 3- 5 (with iTEr replaced 
A 

(3-9) . 

where 
n 

is given by equation 2-18. Ri 

3.1.5 Earth-Referenced Space Volumes  

The un i t  vector along the  center l ine of the  outer  boundary cone 
for Earth-referenced space volumes is given by equation 3-3 with 

replaced by 8' (eq. 2-22).  Equations 3-4 and 3-5 

and Q respectively. Since the  
O f  

are then used to  compute 

Earth-referenced space volume represents 2 constant area polyhedron 
(sec. 2.51, the  outer  boundary cone t o  be used for predicting AOS 

and LOS t i m e s  circumscribes the  space volume planar area a t  t he  
S/C a l t i tude .  However, for noncircular o r b i t s ,  t he  S/C a l t i t u d e  
var ies  as a function of t i m e  and thus the  s i z e  of t h e  outer  
boundary cone would also vary as a function of t t m e .  The s i z e  of 
t he  cone is l a rges t  a t  perigee and smallest a t  apogee. Since the 
purpose of t h e  outer  boundary cone i s  t o  bound the  actual  v i s i b i l i t y  
region, t h e  half-cone angle a t  the  S/C perigee a l t i t u d e  w i l l  be 
computed and held constant with respect t o  t i m e .  
the  center of the Earth t o  each vertex of the  space volume pro- 
jected t o  the  S/C perigee a l t i t u d e ,  

a. 

The vector from 

%:*, ( f ig .  3-21 i s  given by 

i = 1,2,3,...n (3-10) 
I. 1 
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Space volume 
boundary at Vertex furthest  
perigee from centroid 
a 1 ti tude 

Cone 
circumscribing 
space volume a t  
perigee 
a 1 ti tude 

Lower boundary 
centroid 

Space vol 
lower boundary 

Center of Earth 

Figure 3-2.- Circumscribing space volumes. 
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where 

sG i 
CB 

is given by equat ion 2-12 

is  given by equation 2-23 +G 

is t h e  S/C per igee  r ad ius  

= a (1  - e) (3-11) 

Thus t h e  half-cone angle  which contains  t h e  vertex f u r t h e s t  from 
t h e  centerline of  t h e  cone is given by 

3.1.6 Celest ia l -Fixed Space Volumes  

The u n i t  vec tor  along t h e  c e n t e r l i n e  of t h e  outer boundary cone 
f o r  c e l e s t i a l - f i x e d  space volumes is given by equation 2-19. 

Equations 3-4 and 3-5 (with C replaced by C) are then used 
t o  compute cxo and t$o, respec t ive ly .  Since t h e  c e l e s t i a l - f i x e d  

space volume a l s o  represents  a constant  area polyhedron (sec. 2.6) , 
t h e  o u t e r  boundary cone to  be used f o r  p r e d i c t i n g  AOS and LOS t i m e s  
circumscribes t h e  space volume planar  a rea  a t  t h e  S/C perigee 
a l t i t u d e  (sec. 3.1.5). The vec tor  from t h e  c e n t e r  of t h e  Earth t o  
each veztex -7f t h e  space volume a t  t h e  S/C per igee  a l t i t u d e ,  
- r O  
Ri , is given by 

A 

(3-13) 
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where 
n 

i s  given by equation 2-18 Ri 

8B is  given by equation 2-27 

R is the  S/C perigee radius 
P 

(equation 3-11) 

Thus 

i = 1 , 2 , 3 , . . . n  (3-14) 
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3.2 DETERMINING WHETHER AOS AND LOS TIMES ARE POSSIBLE 

The following computations w i l l  determine whether t h e  relative 
o r i e n t a t i o n  of t h e  S/C o rb i t  plane and t h e  ou te r  boundary cone 
w i l l  permit any i n t e r s e c t i o n s  between these  t w o  figures. I f  no 
i n t e r s e c t i o n s  are poss ib le ,  then no AOS or  LOS times are possible .  
Since t h e  Earth-referenced targets rotate wi th  t h e  Ear th  and t h e  
ce l e s t i a l - f ixed  t a r g e t s  remain i n e r t i a l l y  f ixed ,  t w o  d i f f e r e n t  
types of tests are required.  The c e l e s t i a l - f i x e d  s i t u a t i o n  i s  
t h e  simplest and is discussed first. 

3.2.1 Celestial-Fixed Targets  

Figure 3-3 i l l u s t r a t e s  a c e l e s t i a l - f i x e d  o u t e r  boundary cone and 
a S/C o rb i t  plane. 
u n i t  angular momentum vector which is given by 

The S/C o rb i t  plane is  perpendicular  t o  t h e  

it x o  
scO scO 

0 scO 

* 
h =  

ISsc x * I 
(3-15) 

where 

8 and 3 are t h e  S/C pos i t i on  and ve loc i ty  vec tors ,  re- 
spec t ive ly ,  i n  t h e  M50 system a t  the  beginning 
of t h e  search. 

sc 
scO 

A 

The cen te r l ine  of t h e  o u t e r  boundary cone, C,  i s  given i n  t h e  
M50 system by 

c = j s i n  a. (3-16) 
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' S/C orbit 
plane 

Figure 3 - 3 . -  Intersection of celestial-fixed 
outer boundary cone w i t h  S/C orbit plane. 
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where 

and Qo were computed using the procedure discussed in 
aO 

section 3.1. 

The intersection points of the outer boundary cone with the S/C 

orbit plane are denoted by I1 and I2 on figure 3-3. These 
vectors can be found by solving the following conic intersection 
equations 

A A 

1 

(3-17a) 

(3-17b) 

(3-17~) 

* 
These equations provide 0 ,  1, or 2 solutions for I. If no 
solutions are produced, then the relative orientation of the 
outer boundary cone and the S/C orbit plane does not permit 
intersections, and no AOS or LOS times are possible. If only 
one solution is produced, the AOS and LOS times are the same. 
If two solutions are produced, the AOS and LOS times predictions 
are made using the method outlimd in section 3.3, 

The method for solving these equation- is presented in 1 

appendix B. 
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3.2.2 Earth-Referenced Targets 

Figure 3-4 i l l u s t r a t e s  an  Earth-referenced o u t e r  boundary cone 
a t  a p a r t i c u l a r  i n s t a n t  of t i m e .  This  cone rotates about t h e  
Ear th ' s  po la r  axis .  Hence, over  one s i d e r e a l  day, t h e  volume of 
space swept o u t  by t h e  o u t e r  boundary cone desc r ibes  a sphe r i ca l  
sector whose upper and lower l i m i t s  are determined by yA 

volume of space are poss ib l e  only  i f  t h e  S/C orbi t  i n c l i n a t i o n  
ex-eeds t h e  lower l i m i t  of  t h e  s p h e r i c a l  s ec to r .  

and 
( f ig .  3-5) .  I n t e r s e c t i o n s  of t h e  S/C orbit  plane with t h i s  

$0 

For posigrade and p o l a r  o rb i t s ,  t h e  S/C o r b i t  p lane  w i l l  i n t e r s e c t  
t h e  s p h e r i c a l  sector only if 1 

1 For re t rograde  o r b i t s ,  i n t e r s e c t i o n s  are possible only  i f  

180 - leal 

(3-18a) 

(3-18b) 

where 

i io t h e  S/C orb i t  i n c l i n a t i o n  i n  t h e  TEI  system 

I f  equat ion 3-18 i s  n o t  s a t i s f i e d ,  then no i n t e r s e c t i o n s  are 
poss ib l e  and thus  no AOS or LOS t i m e s  are poss ib le .  I f  equat ion 
3-18 is s a t i s f i e d ,  then t h e  approach presented i n  section 3.3 is 
used t o  p r e d i c t  AOS and LOS t i m e s .  

'The absolu te  value s i g n  i s  used i n  these equat ions t o  ac- 
commodate t a r g e t s  i n  both t h e  northern and southern hemispheres. 
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Figure 3-4.-  Earth-referenced outer boundary c o n e .  
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Upper limit 

:\ Spherical sector 
swept out by 
Tareh-referenced 
ouzer boundary cone 

\ Ce 1 est ia 1 sphere 

Figure 3-5.- Spherical sector swept o u t  by Earth- 
referenced outer boundary cone. 
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3.3 PREDICTING AOS AND LOS TIMES 

The following subsections present  t h e  equations necessary to  
predict AOS and LOS times for ce l e s t i a l - f ixed  and Earth-referenced 
targets. These equations assume t h a t  the tests performed i n  
sec t ion  3.2 have indicated t h a t  i n t e r sec t ions  of  t he  outer  boundary 
cone with the S/C orbit  plane are possible.  

3.3.1 Celestial-Fixed Targets 

The in t e r sec t ion  vectors, 
used d i r e c t l y  to  predict t h e  AOS and IAS times. 
i l l u s t r a t e s  t h e  geometry. The u n i t  vector i n  t h e  d i r e c t i o n  of 
t h e  ascending node, a, is given by 

A A 

and I2 (sec. 3.2.1) , can be 
I1 

Figure 3-6 

A 

a -  A Is;j cos n 
(3-1;) 

where 

R = r i g h t  ascension of the ascending node i n  the  M50 
system 

A 

The angles between R and t h e  t w o  i n t e r sec t ion  vec tors  are given 

by 

(3-20a) 

(3-20b) 
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Celestial  sphere 

yM 

Figure 5-6.- D e f i n i t i o n  of i n t e r s e c t i o n  p o i n t s .  

3-18 



One of t hese  angles  corresponds to t h e  AOS po in t  and t h e  o t h e r  t o  
t h e  LOS point .  The appropr ia te  angle  can be determined by noting 
t h a t  t h e  v i s i b i l i t y  per iod must be less than or equal  to one hal f  
of t h e  o r b i t .  

Thus le t  

= u1 

= u2 

U 
AOS 

uLos 

(3-21) 

(3-22a) 

(3-23a) 

= u2 (3-2233) 

= u1 (3-23b) 
AOS 

LOS 

U 

U 

The t r u e  anomalies of t h e  AOS and LOS p o i n t s  are given by 

(3-24) 

where 
w is  t h e  argument of per igee  of t h e  S/C o r b i t  

These can be convertea t o  AOS and LOS t i m e s  by 

- M ~ ~ ~ / ~ ~ ~  + 

t ~ ~ ~ / ~ ~ ~  
M 

where 

(3-25) 

(3-26) 
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E ~ ~ ~ / ~ ~ ~  = 2 tan 

( i n  degrees pe r  u n i t  of time) M = -  360 
T 

T -  2 

MO - - +  ( R - 1 )  T ' = tstart 
M 

( 3-2?) 

(3-28) 

(3-29) 

(3-30) 

R is  t h e  per iod number measured w i t h  respec t  t o  

%tart 

a is  t h e  semimajor a x i s  of  t h e  S/C orbi t  

e is  t h e  e c c e n t r i c i t y  of t h e  S/C orbit  

Mo i s  t h e  S/C mean anomaly a t  

p i s  t h e  g r a v i t a t i o n a l  cons tan t  
tstart 

Since both  t h e  orbi t  plane and t h e  c e l e s t i a l - f i x e d  t a r g e t  remain 
i n e r t i a l l y  f ixed ,  uAos 
AOS and LOS t i m e s  for f u t u r e  revolu t ions  d i f f e r  by only t h e  
orbi ta l  period. The AOS and LOS t i m e s  f o r  t h e  subsequent N 
revolu t ions  are given by 

remain constant.  Thus, the and %os 

- t ~ ~ ~ / ~ ~ ~ ,  + T  K = l , 2 ,3 . . .N  (3-31) - 
t ~ ~ ~ / ~ ~ ~  K+l 
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3.3  . 2 

Computation of AOS and LOS times for Earth-referenced targets is 
somewhat more complicated than for celestial-fixed targets since 
the orientation of the Earth-referenced target varies as a func- 
tion of time. 
the AOS and LOS times: 

Earth-Ref erenced Targets 

The following procedure will be used to estimate 

a. The TCA of the center of the Earth-referenced outer boundary 
cone with the S/C position vector will be determined along 
with the corresponding closest approach angle, yCA. These 
computations will be performed on a revolution-by-revolution 
basis. 

b. The closest approach angle from the previous step will be 
compared with yA. If yCA > yA, then no AOS or LOS times 
are possible for that revolution, and the previous step will 
be repeated for the next revolution. If ycA 5 yA, then 
AOS and LOS times will be computed by solving for the times 
when the angle between the center of the outer boundary cone 
and the S/C position vector is equal to yA. 

3.3 . 2.1 Determininq TCA 

The closest approach point occurs when the S/C position vector 
and the center of the outer boundary cone lie in the same hemis- 
phere and are coplanar (fig. 3-7). Both the S/C and the center 
of the outer boundary cone are moving with time. The center of 
the cone is rotating about the Earth's 2 axis at the Earth's 
rotation rate. 
tum vector at a rate which is dependent upon both the orbit period 
and eccentricity. As a result, the TCA cannot be analytically 
determined for noncircular/nonequatorial orbits. The TCA can, 
however, be determined iteratively by the following: 

The S/C is moving about the orbit angular momen- 
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A 

2 

Outer boundary cone 
center l ine  a t  TCA 

A 

S/C position at 

I 

Ascending node 
vector 

Figure 3-7. - Closest amroach pc” n t . 
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a. 

b. 

C. 

d. 

Estimating the closest approach point (for the first revolu- 
tion, this estimate would be based upon tStart; for sub- 
sequent revolutions, this estimate would be based upon the 
TCA of the previous revolution plus one orbital period). 

Determining the time at which the S/C will reach this point. 

Updating the closest approach point based upon the time 
estimate from the previous step. 

Repeating the two previous steps until the difference in 
time between two successive iterations is less than or equal 
to the time step, At. 

The following discussion develops the equations necessary to 
compute the TCA. 

The unit vector from the center of the Earth to the center of 
the outer boundary cone is given by 

where 

a tstart 1 

(3-32) 

(3-33) 

a is the right ascension of the centerline at tstart 
(sec. 3.1) 

0 

10 is the E a r t h  rotation ra te  e 

$ is the latitude of the centerline (sec. 3.1) 
0 
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A The closest approach po in t ,  rCA8 occurs when 
A h 

(3-34) 

A 

where h is  t h e  anqular momentum vector i n  t h e  TEI system 
(computed v i a  eq. 3-15 us ing  RTE1 and V TE* from 
eqs. 3-1 and 3-2). scO scO 

The angle  from the ascending node to t h i s  po in t ,  
by 

u CA' is given 

which can be simplified t o  

A 

where S2 is computed by equat ion 3-19 using t h e  r i g h t  ascension 
of t h e  ascending node i n  t h e  TEI system. 

The TCA, t C A t  is  then given by 

- fCA - UCA - 

McA = ECA - e s i n  E CA 

MCA = - + T  
%A r; 

(3-36) 

(3-37) 

( 3 - 3 8 )  

(3-39) 
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where 

T is given by equation 3-30 

M is given by equat ion 3-28 

e is the orbi t  e c c e n t r i c i t y  

w is t h e  argument of per igee  

This  t i m e  would then be used i n  equat ions 3-32 and 3-33 t o  update 
the  value of C. Equations 3-35 through 3-39 would be repeated 
u n t i l  t h e  value of tCA between t w o  successive i t e r a t i o n s  is 
less than or  equal  t o  the t i m e  s t ep ,  A t .  Af te r  t h e  TCA has been 
found, t h e  corresponding closest approach angle,  
computed. 

h 

yCA, would be 

The u n i t  vec to r  from t h e  center of t h e  Earth t o  t h e  S/C i s  given 

by 

(3-4 0) I cos 52 cos u - s i n  R s i n  u cos i 
s i n  52 cos u + cos R s i n  u cos i 

s i n  u s i n  i 

The closest approach angle  is  given by 

A 

= cos-l ICCA . CCA 

where 
A 

(3-41) 

i s  given by equation 3-40 evaluated a t  
uCA rCA 

CCA i s  given by equat ions 3-32 and 3-33 evaluated 
n 

at tCA. 
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i s  g r e a t e r  t han  t h e  o u t e r  boundary cone a n g l e ,  yA If ’CA 
(sec. 3.11, t hen  no AOS or LOS times are p o s s i b l e  f o r  t h i s  
r evo lu t ion .  I n  t h i s  e v e n t ,  t h e  procedure o u t l i n e d  is  repea ted  
f o r  t h e  n e x t  r e v o l u t i o n .  The i n i t i a l  estimate o f  TCA for t h e  
n e x t  r e v o l u t i o n  would be e q u a l  t o  t h e  TCA for t h e  c u r r e n t  re- 
v o l u t i o n  p l u s  one orb i ta l  per iod .  The p rocess  c o n t i n u e s  u n t i l  
e i t h e r  

tend 
us ing  t h e  method o u t l i n e d  i n  s e c t i o n  3.3.2.2. 

ycA 5 yA 
or t h e  TCA exceeds t h e  end t i m e  o f  t h e  sea rch ,  

. If yCA - < yA, estimates of AOS and LOS t i m e s  are made 

3.3.2.2 

A f t e r  a feasible’TCA has been found, t h e  AOS and LOS t i m e s  can  
be computed by soly-ing t h e  fo l lowing  equa t ions .  

Determining AOS and LOS Times  

A h 

A r * C = c o s y  (3-42) 

S u b s t i t u t i n g  e q u a t i o n s  3-40 and 3-32 i n t o  t h i s  expres s ion  and 
s i m p l i f y i n g  y i e l d s  

c o s  (n - a) cos 9, cos u - s i n  (S2 - CO cos $o cc)s i s i n  u 
+ s i n  $o s i n  i s i n  u = COS yA (3-43) 

Equation 3-43 cannot  be e x p l i c i t l y  so lved  f o r  t i m e  f o r  nonc i r cu la r /  
nonequa to r i a l  orbits. However, t h i s  equa t ion  can be so lved  
numer ica l ly  us ing  t h e  method of  success ive  s u b s t i t u t i o n .  
convenience,  equa t ion  3-43 can be r e w r i t t e n  as 

For 

A, cos u + B1 s i n  u = C1 
-. 

where 

(3-44) 

AI = COS c$o COS ( a  - a )  

B1 

(3 -45)  

(3-46) = s i n  $o s i n  i - cos $o cos i s i n  (Q - a) 
c1 = cos Y* ( 3-47) 
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Assuming 01 is constant between iterations, equation 3-44 has 
the following solution 

- u ~ ~ ~ / ~ ~ ~  - tan-’ cos-’ b+i (3-48) 
+ B1 

The minus sign will produce AOS solutions and the plus sign will 
produce LOS solutions. The procedure is as follows: 

a. Solving for AOS tines, tAOS 

- - %A’ (1) Use initial estimate of tAOS 
(2) Compute A1, B1, and C1 using equations 3-33, 3-45, 

(3) Compute 1lAOS using equation 3-48 with the minus sign. 
( 4 )  Compute revised estimate of AOS time using equations 

(5) If the change in time from the previous iteration is 

3-46, and 3-47. 

3-24 through 3-30. 

less than At, then a solution has been found. Other- 
wise, repeat steps (2) through (5) with the revised time 
estimate . 

b. Solving for LOS time, tLOS 

The solution for LOS time is similar to the procedure for 
AOS time except that 

(1) The initial estimate of LOS time in step a(1) is given 

by 

- tCA (tCA - tAOS) (3-49) tLOS 

(2) 

(3) The revised estimate of LOS time is produced in step a(4). 

tOs 
with the plus sign. 

is computed in step a(3) by using equation 3-48 
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The computations discussed in this section are performed for 
each revolution in which was found to be less than or equal 
to yA. In the special case where yCA is exactly equal to yA, 

the AOS and LOS times are identical and equal to the TCA. Hence 
computation of AOS and LOS times c?n be bypassed. 

ycA 
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3.4 ASSUMPTIONS AND LIMITATIONS 

The fo l lowing assumptions are i m p l i c i t  in the  equations presented 
i n  sections 3 .1  through 3 .3 .  

> t >  a. Unperturbed o r b i t a l  motion over the  time period tend - - 
% t a r t  . 

b. The effects of polar nutation and pracession irom t, to 
can be neglected.  tend 



4.0 FUNCTIONAL OVERVIEW OF AOS AND ];OS TIME COMPUTATIONS 

This  section provides a func t iona l  overview o f  t h e  ATSVP. The 
overail procedure f o r  determining p rec i se  AOS and LOS t i m e s  is 
presented and discussed. The basic procedure c o n s i s t s  of 
p red ic t ing  t h e  AOS and LOS times us ing  t h e  algorithm presented 
i n  s e c t i o n  3 and then r e f i n i n g  these  p red ic t ions  by performing 
a sequent ia l  time search  using t h e  equat ions presented i n  s e c t i o n  2. 

The AOS times are defined t o  be t h e  time po in t  a t  which t h e  S/C 

first e n t e r s  t h e  area target or space volume. I f  t h e  S/C lies 
wi th in  t h e  area target or space volume a t  t h e  beginning of t h e  
user-specif ied search  period (tstart), t h e  f i r s t  AOS t i m e  w i l l  
be set equal  t o  t h e  s ta r t  t i m e .  LOS t i m e s  are def ined t o  be 
the las t  t i m e  po in t  p r i o r  to  t h e  S/C e x i t i n g  t h e  area t a r g e t  
or space volume. 
volume a t  t h e  end of t h e  user -spec i i ied  search period (tend), then 
t h e  last LOS t i m e  w i l l  be set equal  t o  t h e  end t i m e .  I t  should 
be noted t h a t  t h e  t i m e  increment used t o  perform t h e  sequen t i a l  
t i m e  search w i l l  l i m i t  t h e  accurscy and r e so lu t ion  of t h e  AOS 

and LOS t i m e s  (e.g., i f  t h e  t i m e  increment is  1 minute, t h i s  
impl ies  t h a t  t h e  AOS and LOS t i m e s  w i l l  be determined t o  t h e  

nea res t  minute and t h a t  v i s i b i l i t y  per iods of  less than 1 minute 
may be skipped).  

I f  t h e  S/C lies within t h e  area t a r g e t  or space 

The area t a r g e t s  and space volumes def ined i n  sec t ion  1 f a l l  i n t o  
t w o  general  categories: 

a. Earth-referenced qarhich include 
(1) Earth-referenced circles. 
( 2 )  Earth-referenced polygons. 
(3)  Earth-referenced space volumes. 

b. Celes t ia l - f ixed  which include 
(1) c e l e s t i a l - f i x e d  circles. 
( 2 )  c e l e s t i a l - f i x e d  polygons. 
( a )  c e l e s t i a l - f i x e d  space volumez. 
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The log ic  f o r  ccmputing t h e  AOS and MIS t i m e s  f o r  each of these 
ca tegor i e s  i s  presented in the following subsect ions.  

4 . 1  EARTH-REFERENCED AREA TARGETS AND SPACE VOLUMES 

Figure 4-1 provides a functimal flowchart  f o r  t h e  Earth-refer- 
enced area t a r g e t s  and space volumes. The required i n p u t s  are 

a. Target table ( e i t h t r  t h e  grouna t a r g e t ,  ground polygon, or 

b. Target I D .  

c .  

d. 
e, 

ground-f ixed space talume table). 

Star t  and end t imes and t i m e  increment (tstart, 
A t  , r e spec t ive ly )  . 
S/C ephemeris and ephemeris I D .  

RNP matrix and assoc ia ted  epoch t i m e .  

tend, and 

A b r i e f  desc r ip t ion  of t h e  process is  provided herein.  T ~ o  
heading numbers correspond to  t h e  numbered blocks on f i g u r e  4-1. 

1, 

2. 
3. 

4 .  

5. 

6 .  

The geodet ic  parameters def in ing  t h e  a rea  t a r g e t  or space 
volume a r e  obtained from t h e  appropr ia te  t a r g e t  t a b l e  based 
upon t h e  input  t a r g e t  I D .  Sect ions  2 .1 .2 ,  2.3.2, and 2.5.2 
descr ibe  t h e  s p e c i f i c  parameters which a r e  required.  
The RNP matrix and i t s  as soc ia t ed  epoch t i m e  a r e  obtained. 
The geodet'x coordinates  of t h e  area t a r g e t  or  space volume 
a r e  transformed t o  t h e  r o t a t i n g  geocent r ic  coordinate  sys tem 
(secs. 2.1.2,  2.3.2, and 3.5.2). 

The number of v i s i b i l i t y  per iods between tstart and tend 
a r e  determined along with p red ic t ioqs  of AOS an6 LOS times. 
Sec t ion  3 descr ibes  t h i s  process. 
A tes t  is perlormed t o  eetcrmine whether any v i s i b i l i t y  
periods w e r e  found. 
t 'mes a r e  possible and processing i s  terminated. 
A loop i s  e s t ab l i shed  which w i l l  process each v i s i b i l i t y  
period found ; t ep  4 .  

If t h i s  test  i s  f a i l e d ,  then no  AOS/LOS 
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7. The current time, t, is initialized to the AOS time predict- 
The initial value of the precise AOS time, AOSlr 

is set to zero. The AOS/LOS counter, i, is initialized 
to one. 

. ion 8 tAWK 

1 

8. A loop is established which will terminate when t exceeds 
the LOS time prediction, tLosK. 

9. The S/C position vector (at time t in the M50 system) is 
obtained from the ephemeris file based upon the ephemeris ID. 

10. The S/C position vector is transformed t o  the rotating geo- 
centric system and computations are performed to determine 
whether the S/C lies within the area target or space volume 
(secs. 2.1.2, 2.3.2, 2.3.2, and app. A). 

Based upon the results of these tests, the S/C visibility 
parameter, v, is set 

V > 0 if the S/C lies within the area target or space 
volume 

V < 0 if the S/C lies exterior to the area ,arget or 
space volume 

11. A test is Ferformed on V. 

If v > o  
11.1 a further test is performed on AOSi to determine 

whether the S/C was also visible during one or more 
of the previous time steps. 

If AOSi > 0 

11.1.1 then the S/C was visible during one or more 
of the previous time steps. Hence, no transi- 

'Depending upon the target geometry and the S/C groundtrack, 
multiple AOS/LOS times could occur during a single visibility period. 
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t i o n  has occurred. The current t i m e  is  incre-  
mented by A t  and t h e  search  cont inues.  

If AOSi - < 0 

11.1.2 then a t r a n s i t i o n  i n t o  t h e  area target or 
space volume has occurred. The c u r r e n t  AOS 
t i m e ,  
The c u r r e n t  t i m e  is incremented by A t  and 
t h e  search continues.  

AOSi, is  set equal t o  t h e  c u r r e n t  t i m e .  

I f V C O  

11.2 a f u r t h e r  test  i s  performed on AOSi to  determine whether 
t h e  S/C w a s  v i s i b l e  during t h e  previous t i m e  s tep .  

If AOSi > 0 

11.2 .1  then t h e  S/C w a s  v i s i b l e  during t h e  previous 
t i m e  s t e p  and a t r a n s i t i o n  ou t  of t h e  area 
t a r g e t  or space volume has occurred. The 
cu r ren t  LOS t i m e ,  
t i m e  of t h e  previous t i m e  s t e p  (t - A t ) .  The 
AOS/LOS counter,  i, i s  incremented by one. 
The next  POS t h e  i s  i n i t i A l i z e d  t o  zero. The 
cu r ren t  t i m e  is incremented by A t  and t h e  search  
continues. 

Losir is set equal  t o  t h e  

11.2.2 t h e  S/C w a s  no t  vis ible  during t h e  preceding 
t i m e  s tep .  Thus no t r a n s i t i o n  has occurred. 
The c u r r e n t  t i m e  is incremented by A t  and t h e  
search continues.  

12.  A t  t h z  completion of t h e  sequen t i a l  t i m e  search,  a Last  i s  
made t o  determine whether t h e  S/C w a s  v i s i b l e  a t  t h e  end t i m e .  
I f  t h e  test is  t r u e s  t h e  las t  LOS t i m e  i s  set equal t o  tLosK. 

4.2 CELESTIAL-FIXED AREA TARGETS AND SPACE VOLUMES 

Figure 4-2 i l l u s t r a t e s  t h e  l o g i c  flow f o r  t h e  c e l e s t i a l - f i x e d  
area t a r g e t s  and space volumes. This l o g i c  is sirilar t o  ?be 
approach presented i n  s e c t i o n  4.1. The required inpu t s  are 
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a. Target table (either celestial circles, celestial polygons, 

b. Target ID. 
c. 

or celestial-fixed space volumes table). 

Start and end times and time increment (tstart, 
At, respectively) . 

and tendt 

d. S/C ephemeris and ephemeris ID. 

A brief description of the process is provided herein. 
heading numbers correspond to the numbered blocks on fiqure 4-2. 

The 

1. The parameters defining the celestial-fixed area target or 
space volume are obtained from the appropriate target table 
based upon the input target ID. Sections 2.2.2, 2.4.2, and 
2.6.2 describe the specific parameters which are required. 

and tend 
are determined along with predictions of AOS and LOS times. 
Section 3 describes this process. 

A test is performed to determine whether any visibility periods 
were found. If this test is failed, then no AOS/LOS times 
are possible and processing is terminated. 

2. The number of visibility periods between tstart 

3. 

4. A loop is established which will process each visibility 
period found in step 2. 

5. The current time, t, is initialized to the AOS time prediction, 
. The initial value of the precise AOS t.ime, AOSl, 1s 

tAOSK 1 set to zero. The AOS/LOS cow-ter, i, is Initialized to one. 

6. A loop is established which will terminate when t exceeds 
the LOS time prediction, tLOs, 

7. The S/C position ver': rr (at time t in the M50 system) is 
obtained from the xmeris file based upon ephemeris ID. 

8. Computations are performed to determine whether the q/C lies 
within the area target or space volume (secs. 2.2.2, 2.4.2, 

'Depending upon the target geometry and the S/C groundtrack, 
multiple AOS/LOS times could occur during a sinqle visibility 
period. 
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2.6-2, and app. A) .  Based upon t h e  r e s u l t s  of these  tests, 
the S/C v i s i b i l i t y  parameter, V, is set 

V > 0 i f  t h e  S/C lies within t h e  area target or  
space volume 

V < 0 i f  the S/C lies exterior 
or space volume 

9. A tes t  is perfomed on V. 

If v > o  
9.1 a f u r t h e r  test is performed on 

the  S/C was also visible during 
time steps- 

If A S i  > 0 
9.1.1 then t h e  S/C was visible 

t h e  previous t i m e  s teps .  

t o  t h e  area target 

AOSi t o  determine 
one or more of the 

during one or more 

whether 
previous 

Of 

Hence, no t r a n s i t i o n  
has  occurred. The cur ren t  t i m e  is incremented 
by A t  and t h e  search continues. 

If AOSi - < 0 

9.1.2 then a t r a n s i t i o n  i n t o  t h e  area target or space 
volume has occurred. The cur ren t  AOS t i m e ,  AOSi, 

is  sa t  equal t o  t h e  cu r ren t  t i m e .  The cur ren t  
t i m e  is  incremented by A t  and t h e  search continues. 

If v < o  
9.2 a f u r t h e r  test is  performed on AOSi t o  determine whether 

t h e  S/C was v i s i b l e  dur'ng the  previous s tep.  

I f  AOSi > 0 
9.2.1 then t h e  S/C was v i s i b l e  during the  previous t i m e  

The cur ren t  LOS t i m e ,  
s t e p  and a t r a n s i t i o n  ou t  of t h e  area t a r g e t  o r  
space volume has occurred. 
LOSi, is set equal t o  t h e  t i m e  of t h e  previous 
t i m e  s t e p  (t - A t ) .  The AOS/LOS counter,  i ,  is 
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incremented by one. The next AOS time is initial- 
ized to zero. The current time is incremented by 
At and the search continues. 

9.2.2 the S/C was not visible during the preceding time 
step. Thus, no transition has occurred. The 
current time is incremented by At and the search 
continues. 

10. At the completion of the sequential time search, a test is 
made t o  determine whether the S/C was visible at the end 
time. If the test is true, the last LOS time is s e t  equal 
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5.0 DETAILED LOGIC FLOW 

Figure 5-1 presents the detailed logic flow for the area targets 
and space volumes processor. This flowchart integrates the 
functional overview presented in section 4 with the equations and 
approach presented in sections 2 and 3 and the appendixes. 

Annotations are provided on the flowchart to describe the comput- 
ations and tests that are performed. In order to simplify 
figure 5-1, several notations have been used to represent corre- 
sponding FORTRAN functions, e. g. , 

$ (1) represents an array of longitudes indexed by 

%(I) represents a two-dimensional array [i.e., R ( 3 , 5 ) ]  in 
the variable I. 

which the first dimension reprzsents the Cartesian 
components of the vector and the second dimension is 
indexed by the variable I. Hence, operations involving 
vector quantities imply a "DO loop" on the innermost 
dimension. 

N  ̂ (J,I) represents a three-dimensional array [i.e., N ( 3 , 5 , 3 ) ]  
in which the first dimension represents the Cartesian 
components of the vector and the second and third 
dimensions are indexed by variables J and I, respectively. 
Operations involving these vector quantities also imply 
a DO locp on the innermost dimension. 

variable specified by the lower bound (e.g., the variable 
L will be vsed tc perform the summation over the range 

K -  1 implies s-mation over the indicated range using the c 
L - 1  

L =  1 to L =  K -  1). 
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I n i t i a l i z e  
NSICES - 1 
NSEG = 1 
h(1) = 0 
(I = 1,2,3,4,5) 

c. Earth-referenced polygon 
NSIDES, NSEG, VO(J) 

$ ( I ) ,  h ( 1 ) r  h(I) 
(J = 1,2,. . .NSEG) 
( I  = 1,2,...NSIDES) 

d. Celestial polygon 
NSIDES, NSEG, VO(J) 
(J = 1,2,. . .NSEG) 
a ( I ) ,  6(I) 
(I = 1,2,, . .NSIDES) 

e. Earth-referenced space 
volume 
NSIDES, NSEG, VO(J) 
(J = 1,2,...NSEG) 

( I  = 1,2,. . .NSIDES) 
f .  Celestial space volume 

NSIDES, NSEG, VO(J) 
(J = 1,2,...NSEG) 
a ( I ) ,  6(I), hl, h2 
(I = 1,2,...NSIDES) 

$ ( I ) ,  X C I ) ,  hi, h2 

<L-( Target 

FD Compute 
vec to r s  
to  each 
ve r t ex  

Fiqure 5-1. - Deta i l ed  flowchart. 
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O b t a l n  S/C pos i t ion  

d C o )  vectors a t  ephemeris 
file , 'S 

cRNp3fio lEr it SCo 
Transform S/C position 
and ve loc i ty  vectors 
to TEI system 

to Replerian elements 
(a, e, i, n, w e  Mol 

1 

1 

Test Compute centroid of 
Target entire area target 

I D  or space volume 

Compute unit 
centroid vector 

CTB * +- I - I;:, I 
6 

Figure 5-1 . -  Continued. 
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CTB = J = 1 i NSIDES 

NSIDES c it(J) 

ETB = e + hl - 
181 

J = l  e = NSIDES Earth- referenced 
space volume e 

,- 

NSIDES 
S(J) 

5 -  - J =  1 - 
NSIDES Celestial 

space volume 
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of e n t i r e  aree 
target or spac 
volume 

Figure 5-1.-  Continued. 
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Q 
Target  is Transform unit 

centroid vector 
to mr system 

Compute r ight  
ascension and 
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centerline 
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Target 7 ID A 

Y 
IF 

Target i s  Determine whether AOS,~i,oS 
c e l e s t i a l -  times are poss ib le  

1 
fixed 

Outer boundary cone 

o r b i t  plane. NO AOS/MS 
times are poss ib le .  

then does not in tersec t  S/C IF 
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I 

Compute 
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time of 
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rate and 
perigee 

6 
Figure 5- 1. - Continued. 
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Target is Compute AOS/LoS 
time predictions 

TLOS = tend 
IF 

rAos > 0 

N o  AOS/LQS i --.e8 
in user-specified 
search period 

Set f ina l  LOS 
time equal to 
end time 

- I  

-st i f  s/c was 
v i s ib le  a t  end 
of search 

Target is a 
circle 

I 
Generate 

f: 7i I ,  t I compute centroid 
bB - R I i l  &- 

-I 
J - 1,NSEG Lc-Lt 

Decoae vertex 
ordering integer 

t 

I /  compute lover 

Perform t i m e  
search for vectors, and I 
precise 
AoS/LOS t i m e s  side 

boundary centroid, 
unit outward normal 

distance t o  each 

Figure 5-1.- Continued. 
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-1 
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points 
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A 
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Compute intersect ion 
vectors 
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Figure 5-1.- Continued. 
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I %os = u1 I 
= u2 AOS U else 

Id 

Compute estimates of 
i n i t i a l  AOS/LOS t i m e s  

DO WHILE Predict AOS/LOS 
times over t i m e  span 
tend - ’ - ’ t s tar t  

t ~ ~ ~ ( ~ ~ ~ )  < 

i 

Figure 5-1. - Continued. 
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Compute AOS/LOS 
time estimates 
for each revolution tLoS (NREV) + (REV-].) T 

REV = REV + 1 
NREV = NREV + 1 

L i m i t  Aos t i m e  

start of search 
then 

1 

Terminate DO loop 

exceeds end of 
search 

then NmV Nm .. if AOS ti= 
End DO WHILE 

Increment period 
counter 

P 

L i m i t  LOS t i m e  

I s t a r t  of search 

IF 
then 

tLOS(NREv) < 
I ?..> then {-I %:a:: of search. t?:nd End 

DO loop when LOS 
t i m e  exceeds end 

End DO WHILE 
t ~ O S ( m )  ’ tend 

of search I 

Figure 5-1. - Continued. 
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I IF 
N m  = NREV - 1 then - tAos(NREVl t 

End Do 
s 

L i m i t  LOS t i m e  
estimate to s t a r t  

tLos(Nm) = tstart of search 

Terminate outer 
DO loop i f  AOS 
t i m e  exceeds 
end of search 

I 
- L i m i t  LOS time 

estimate to 

NREV = NREV .t 1 C J  end of search. 
Terminate outer DO loop 
when LOS exceeds end 
of search 

Figure 5-1.- Continued. 
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NV = mrO(1) 
A 

Extract wctars to each vertex 
for this segment aad arranga 
into  array, RID according to 
decoded vertex ordering iateger 

Set NV equal to 
number of sides 
for th la  segment 

ComeUte  unit 
Target is 

J O  1, NVMl area target vectors 

Do 
J - 1 . N V  

compute l a s t  unit 

d(J ,I )  = "n(J.1) - [RI(J) - E,(Ij] 
Conpute perpendicular ciistance 
from lower boundary centroid 
to each aide of each segment 

Do 
K = 1.3 

Figure 5-1.- Continued. 
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Figure 5-1.- Continued. 
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N o  change 
has  occurred. 

t i m e  

IAOS = 1 
S t  + At 

Set AOS parameter 
to v i s i b l e  and 
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Generate 
LOS 

e n t r y  

1 1  
d 

Set AOS parameter 
to not v i s i b l e  and IAOS = 0 

t = t + At:  incremhnt t i m e  

Figure 5-1.- Concluded. 
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SUBDIVIDING CONCAVE POLYGOkS 

This appendix discusses the procedure for subdividing complex 
concave polygons i n t o  t w o  or more simpler convex segments.' 
purpose of t h i s  subdivision process is t o  permit the  equations i n  
sect ion 2 to be used on a segment-by-segment basis to  test for 
containment. The c r i t e r i o n  f o r  the S/C (or S/C subsatellite 
point)  to  be contained in t h e  concave a rea  t a r g e t  or space volume 
is t h a t  It must be contained i n  any one of its segments. 
convenience, the equations and fig-ures presented i n  this appendix 
w i l l  usc a pentagon as an example.* 
e a s i l y  extended to  any n-sided polygon. 

The 

For 

HOWeVeX, t h i s  approach is 

Figure A-1 presents t h ree  examples of concave pentagons. 
A - l ( a )  i l l u s t r a t e s  a pentagor, having one concave vertex. Figures 
A - l ( b )  and A - l ( c )  i l l u s t r a t e  pentagons having t w o  concave ver t ices .  
These pentagons can always be subdivided i n t o  t r i ang le s  by select- 
i n g  an "appropriate" ver tex and connecting nonadjacent ve r t i ce s  
( f ig .  A-2) .  The maximum number of t r i a n g l e s  necessary to completeiy 

Figure 

subdivide any & - b i t r a r i l y  shapzd 

N 
Seg,X 

polygon is 

= n - 2  (A-1) 

whera 

n = number of sides 

'A concave polygon i s  defined t o  be a polygon t h a t  has one or 
more in te r ior  vertex angles exceeding 180 degrees. A convex 
polygon is defined t o  be a polygon tha - t  has a l l  of i t s  i n t e r i o r  
angles less than  180 degrees. 

addressed i n  the  requiremen defined i n  reference 1. 
2This corresponds to  tl;e maximum number of s ides  spec i f i ca l ly  



(a) One concave vertex. 

5 

4 

(b) Two adjacent concave vertices. 

5 

(c) Two nonadjacent concave vertices. 

Figure A-1.- Examples of concave pentagons. 
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5 

;a) One concave vertex. 

5 

4 

(b) Two adjacent concave vertices. 

t 

(c) Two nonadjacent concave vertices. 

Figure A-2.- Examples of subdividing concave pentagons. 
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FUthermOrt?, the  m a x i m u m  number of i n t e r i o r  angles exceedin.; 180 
degrees can also be determined by ncrting t h a t  the  sum of the 
i n t e r i o r  angles of the polygon must be equal t o  t h e  sum of the 
in te r ior  angles of a l l  t r i ang le s  i n t o  which it can be subdivided. 
Thus, t h e  sum of t he  i n t e r i o r  ver tex angles for any a r b i t r a r i l y  
shaped polygon is given by 

n 
yi = (n - 2) 180 (A-2) 

i=l 

where 

= i n t e r i o r  vertex angles of the polygon 
'i 

Thus, the maximum number of i n t e r i o r  ver tex angles exceeding 180 
degrees, y*, is given by 

(n - 3 )  (A-3) 

This equation l h i t s  the  maximum number of concave ve r t i ce s  for a 
pentagon t o  two. Figures A - l ( b )  and A - l ( c )  i l l u s t r a t e  t w o  ex- 
amples. In f igure  A-l(b) ,  t he  t w o  concave v e r t i c e s  are adjacent 
t o  each other.  I n  f i g u r e  A - l ( c ) ,  t h e  t w o  concave ve r t i ce s  are non- 
adjacent. 

The se lec t ion  of the "apsropriate" ver tex to begin the subdivision 
process is highly dependent upon t h e  shape ox the  polygon and t h e  
number and re la t ionship  of the  concave ver t ices .  A l s o ,  it i s  not  
always cocessary t o  subdivide the polygon i n t o  t r iangles .  Figure 
A-3 i l l u s t r a t e s  another method for subdividing t h e  pentagon of 
f igu re  A-l(a). I n  t h i s  case, the concave pentagon is subdivided 
i n t o  a four-sided cmvex polygon and one t r iangle .  Furthermore, 
f igure  A-1 by no means exhausts a l l  of t h e  Dotential  pentagon 
shapes t h a t  could be cons t ruc t ed .  
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Figure A-3.- Alternate subdivis ion.  
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Since t h e  shape of t h e  area t a r g e t s  and space volumes w i l l  remain 
static during a mission, it is recommended t h a t  t h e  subdivision 
process be performed manually.' 
to  t h i s  approach: 

There are t w o  d i s t i n c t  advantages 

a. It el iminates  t h e  coding and execution of complex subdivision 
logic. 

space volume and does no t  have t o  be repeated each time AOS 

and LOS times are desired.  

b. It can be performed once for each concave area target and 

The treatment of concave polygons w i l l  p lace addi t iona l  require- 
ments on t h e  t a r g e t  tables other than those s p e c i f i c a l l y  mentioned 
i n  reference 1. I n  addi t ion  t o  t h e  number of s i d e s  and coordinates  
f o r  each vertex, the t a r g e t  t ab l e s  must also contain the following 
for each polygon-shaped t a r g e t  

- number of segments i n t o  which t h e  target is subdivided 
> 1 for polygons having €ive or less s ides )  

- in tegers  def ining the  counterclockwise ordering of t h e  

NSeg 
seg - ( 3  N 

VOi 
ver t i ce s  for each segment (i = l r 2 ,  ... Nseg) 

The use of these addi t iona l  parameters can bes t  be i l l u s t r a t e d  by 
example. For f igu re  A-3, t h i s  pentagon is subdivided i n t o  t w o  
segments. The f irst  segment i s  a four-sided polygon defined by 
ve r t i ce s  1, 2 ,  3, and 5. The second segment is a t r i a n g l e  defined 
by vertices 3 ,  4 8  and 5. The corresponding parameters f o r  t h i s  
pentagon would be 

N = 2  
seg 

= 1235 (or 2351 or 3512 or 5123) 

= 345 (or 453 or  534) 
vol 

V02 

'This can e a s i l y  be performed by p lo t t i ng  the  ver tex  points  
on a Mercator project ion.  
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Similarly, for f igu res  A-2(b) and A - 2 ( c )  r 

a. Figure A-2(b) 

N = 3  

VO1 

V02 

V03 

seg 
= 125 (or 251 or 512) 

= 235 (or 352 or 523)  

= 345 (or 453 or 534) 

b. Figure A-2(c)  

N = 3  
seg 

= 125 (or 251 or 512) 

= 245 (or 452 or 524)  

= 234 (or 342 or 423) 

vol 

v03 

V02 

For consistency, t h i s  approach can also be used for convex polygons. 
I n  t h i s  case, Nseg would be one and VO1 would be set to  t?e 

counterclockwise ver tex  sequence. 

For computational purposes, the number of sides for each segment, 
n can be ex t rac ted  from the vertex order ing  in t ege r ,  VOi, as i' 
follows 

where 

TRUNC im2lies i n t e g e r  t runca t ion .  

t h  The ver tex  numbers, V corresponding t o  each ve r t ex  of t h e  i 

subpolygon can a l s o  be ext rac ted  from t h e  ver tex  order ing  i n t e g e r  
as follows 

j' 
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I ni- 9, 
voi - 

(A-5b) i j = 2,3,...n 
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CONIC INTERSECTIONS 

T h i s  appendix p r e s e n t s  the equa t ions  t o  compute t h e  i n t e r s e c t i o n  
p o i n t s  between t w o  r i g h t  c i r c u l a r  cones.' 
parameters  are 

The r e q u i r e d  i n p u t  

h 

VI - u n i t  vector a long  the axis o f  the first cone 

y1 - half-cone a n g l e  o f  t h e  first cone 
h 

V2 - u n i t  vector a long  the a x i s  o f  the second cone 

y 2  - half-cone ang le  of t h e  second cone 

The q u a n t i t i e s  t o  be computed are 

A A 

I1 and I2 - u n i t  vectors t o  t h e  i n t e r s e c t i o n  p o i n t s  of the  
two cones 

F igure  B-1 i l l u s t r a t e s  t h e  t w o  r i g h t  c i r c u l a r  cones and t h e  i n t e r -  
s e c t i o n  p o i n t s .  
and t h e  on ly  r e s t r i c t i o n  i s  t h a t  both V1 and V2 must have a 

common o r i g i n  and must be expressed  i n  t h e  same system. The first 
s t e p  is  to  de termine  whether t h e  r e l a t i v e  or ien ta t ion  of t h e  t w o  
cones pe rmi t s  any i n t e r s e c t i o n s .  T h i s  can be determined by com- 
p u t i n g  t h e  a n g l e  between t h e  axes  of t h e  t w o  cones.  

The c o o r d i n a t e  system for t h e  cones i s  a r b i t r a r y  
h h 

6 

(B- 1) -1 A y = cos {Vl v,) 

'These e q u a t i o n s  can also be used t o  compute t h e  i n t e r s e c t i o n  
p o i n t s  between a r i g h t  c i r c u l a r  cone and a p L n e  or t h e  i n t e r s e c t i o n  
p o i n t s  between t w o  planes.  

B- 1 



,section 

Figure B-1.-  Intersection of two cones. 
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The cones w i l l  no t  i n t e r s e c t  i f  

Y ' Y 1  + Y2 [ f ig .  B-2 (a) 1 (B-2) 

or 

y + smaller {yl:  y2} < grea te r  {yl: v,) [ f ig .  B - 2 ( b ) ]  (B-3)  

Assuming in t e r sec t ions  are possible (i.e., ne i the r  equation B-2 
nor B-3 i s  s,tisfied), t h e  next s t e p  i s  t o  compute the  in t e r sec t ion  
vectors. Figure B-3 i l l u s t r a t e s  t he  geonietry. The in t e r sec t ion  
vectors are symetr ical ly  located on either side of t h e  arc connect- 
ing  vectors  V1 and V2. Furthermore, the in t e r sec t ion  vectors  

l i e  on the perimeter of both cones. Thns, a l l  of the  sides of t h e  

A A 

A n A 

spher ica l  t r i a n g l e  connecting vectors  vl, v28 and are 
known 

n A 

side a (connecting V1 and I1 ) = y1 

side b (connecting V2 and I1 ) = y2 

side c (connecting V1 and V2 ) = y 

A A 

A A 

The angle from side 'c ' t o  side 'a ' can be determined using the 

half-angle formula for spher ica l  t r i ang le s .  The r e s u l t  i s  

(B-4) 

where 



(b) y + smaller } < greater { y l  : y 2 }  

Figure B-2.- C o n d i t i o n s  when cones do n o t  i n t e r s e c t .  
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Figure B-3 . -  Spherical geometry to compute intersect ion p o i n t s .  
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The dual value of K i n  equation B-5 produces t w o  values  of B 
i n  equation B-4. These values of B are equal  i n  magnitude b u t  

The u n i t  vectors to t h e  t w o  i n t e r sec t ion  po in t s  are given by 

opposite in s ign  and correspond to  t h e  t w o  i n t e r s e c t i o n  points .  1 

cos B s i n  y1 
A 

where A 

v1 => (ITlx, vly. vlz) 

A 

ly' R1 =' (Llx, a 
CI A 

(B-9)  

'For t h e  spec ia l  case of B = 0,  t h e  two i n t e r sec t ion  vec tors  
are coincident.  T h i s  physical ly  corresponds t o  t h e  s i t u a t i o n  when 
t h e  two cones are tangent. 
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